Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2(1): 144-154, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35016337

RESUMO

In the context of cancer treatment, gold nanoparticles (AuNPs) are considered as very promising radiosensitizers. Here, well-defined polymer-grafted AuNPs were synthesized and studied under gamma irradiation to better understand the involved radiosensitizing mechanisms. First, various water-soluble and well-defined thiol-functionalized homopolymers and copolymers were obtained through atom transfer radical polymerization. They were then used as ligands in the one-step synthesis of AuNPs, which resulted in stable hybrid metal-polymer nanoparticles. Second, these nano-objects were irradiated in solution by γ rays at different doses. Structures were fully characterized through size exclusion chromatography, small-angle X-ray scattering, and small-angle neutron scattering measurements, prior to and after irradiation. We were thus able to quantify and to localize radiation impacts onto the grafted polymers, revealing the production sites of reactive species around AuNPs. Both external and near-surface scissions were observed. Interestingly, the ratio between these two effects was found to vary according to the nature of polymer ligands. Medium-range and long-distance dose enhancements could not be identified from the calculated scission yields, but several mechanisms were considered to explain high yields found for near-surface scissions. Then cytotoxicity was shown to be equivalent for both nonirradiated and irradiated polymer-grafted NPs, which suggested that released polymer fragments were nontoxic. Finally, the potential to add bioactive molecules such as anticancer drugs has been explored by grafting doxorubicin onto the polymer corona. This may lead to nano-objects combining both radiosensitization and chemotherapy effects. This work is the first one to study in details the impact of radiation on radiosensitizing nano-objects combining physical, chemical, and biological analyses.

2.
ACS Appl Mater Interfaces ; 6(12): 9085-92, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24870015

RESUMO

Although the conventional methods for strong attachment of chitosan onto stainless steel require many steps in different solvents, it has been demonstrated in this work that covalent grafting of chitosan on a steel surface can be easily achieved through the formation of a self-adhesive surface based on aryldiazonium seed layers. Initially, a polyaminophenyl layer is grafted on a stainless steel surface by means of the one-step GraftFast(TM) process (diazonium induced anchoring process). The grafted aminophenyl groups are then converted to an aryldiazonium seed layer by simply dipping the substrate in a sodium nitrite acidic solution. That diazonium-rich grafted layer can be used as a self-adhesive surface for subsequent spontaneous coating of chitosan onto the steel surface. X-ray photoelectron and impedance electrochemical spectroscopies were used to characterize the pristine and modified steel samples. As evidenced from impedance and linear polarization results, the primary polyaminophenyl layer characterized by a high charge transfer resistance contributed to better protection against corrosion of the resulting chitosan-coated steel in sulfuric acid medium.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24404434

RESUMO

An organic solar cell based on a poly-3-hexylthiophene (P3HT): phenyl-C61-butyric acid (PCBM) bulk hetero-junction was directly coupled with molybdenum sulfide resulting in the design of a new type of photocathode for the production of hydrogen. Both the light-harvesting system and the catalyst were deposited by low-cost solution-processed methods, i.e. spin coating and spray coating respectively. Spray-coated MoS3 films are catalytically active in strongly acidic aqueous solutions with the best efficiencies for thicknesses of 40 to 90 nm. The photocathodes display photocurrents higher than reference samples, without catalyst or without coupling with a solar cell. Analysis by gas chromatography confirms the light-induced hydrogen evolution. The addition of titanium dioxide in the MoS3 film enhances electron transport and collection within thick films and therefore the performance of the photocathode.

4.
Nanomaterials (Basel) ; 3(2): 303-316, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28348337

RESUMO

This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting.

5.
Nat Chem ; 5(1): 48-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23247177

RESUMO

The viability of a hydrogen economy depends on the design of efficient catalytic systems based on earth-abundant elements. Innovative breakthroughs for hydrogen evolution based on molecular tetraimine cobalt compounds have appeared in the past decade. Here we show that such a diimine-dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode. The resulting electrocatalytic cathode material mediates H(2) generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials. This material is remarkably stable, which allows extensive cycling with preservation of the grafted molecular complex, as shown by electrochemical studies, X-ray photoelectron spectroscopy and scanning electron microscopy. This clearly indicates that grafting provides an increased stability to these cobalt catalysts, and suggests the possible application of these materials in the development of technological devices.


Assuntos
Cobalto/química , Hidrogênio/química , Iminas/química , Nanoestruturas/química , Nanotubos de Carbono/química , Compostos Organometálicos/química , Água/química , Catálise , Eletroquímica , Eletrodos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Compostos Organometálicos/síntese química
6.
Nat Mater ; 11(9): 802-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22863815

RESUMO

The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable and efficient systems for the conversion and storage of renewable energy sources. The production of hydrogen through water splitting seems a promising and appealing solution. We found that a robust nanoparticulate electrocatalytic material, H(2)-CoCat, can be electrochemically prepared from cobalt salts in a phosphate buffer. This material consists of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte and mediates H(2) evolution from neutral aqueous buffer at modest overpotentials. Remarkably, it can be converted on anodic equilibration into the previously described amorphous cobalt oxide film (O(2)-CoCat or CoPi) catalysing O(2) evolution. The switch between the two catalytic forms is fully reversible and corresponds to a local interconversion between two morphologies and compositions at the surface of the electrode. After deposition, the noble-metal-free coating thus functions as a robust, bifunctional and switchable catalyst.

7.
Langmuir ; 28(32): 11767-78, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22793962

RESUMO

The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.

8.
Chem Commun (Camb) ; 48(38): 4627-9, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22473416

RESUMO

The relationship between the morphology of polypyrrole and their electrocatalytic performances towards the oxygen reduction reaction (ORR) in alkaline media is described; annealed polypyrrole with granular- and tubules-like morphology exhibited different catalytic efficiencies.

9.
ChemSusChem ; 5(4): 647-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22389330

RESUMO

High-performance oxygen reduction reaction (ORR) catalysts based on metal-free nitrogen-containing precursors and carbon nanotubes are reported. The investigated systems allow the evaluation of the effect of nitrogen-containing groups towards ORR and the results show that the catalysts are compatible with the conditions encountered in alkaline fuel cells, exhibiting good catalytic activity and stability compared with conventional Pt/C electrocatalyst.


Assuntos
Nanotubos de Carbono/química , Nitrogênio/química , Oxigênio/química , Tetrazóis/química , Triazóis/química , Catálise , Eletroquímica , Concentração de Íons de Hidrogênio , Oxirredução
10.
Dalton Trans ; 41(15): 4445-50, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22344390

RESUMO

Sequential growth in solution (SGS) was performed for the magnetic cyanide-bridged network obtained from the reaction of Ni(H(2)O)(2+) and Cr(CN)(6)(3-) (referred to as NiCr) on a Si(100) wafer already functionalized by a Ni(II) complex. The growth process led to isolated dots and a low coverage of the surface. We used the NiFe network as a template to improve the growth of the magnetic network. We elaborated alternate NiFe (paramagnetic)-NiCr (ferromagnetic) ultrathin films around 6 nm thick. The magnetic behaviour confirmed the alternate structure with the ferromagnetic zones isolated between the paramagnetic ones since the evolution of the blocking temperature is consistent with the evolution of the layers' thickness expected from the SGS process.

11.
Dalton Trans ; 41(5): 1582-90, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159371

RESUMO

Controlling the elaboration of Coordination Networks (CoNet) on surfaces at the nanoscale remains a challenge. One suitable technique is the Sequential Growth in Solution (SGS), which has the advantage to be simple, cheap and fast. We addressed two issues in this article: i) the controlled synthesis of ultra thin films of CoNet (thickness lower than 10 nm), and ii) the investigation of the influence of the precursors' concentration on the growth process. Si(100) was used because it is possible to prepare atomically flat Si-H surfaces, which is necessary for the growth of ultrathin films. We used, as a model system, the sequential reactions of K(4)[Fe(II)(CN)(6)] and [Ni(II)(H(2)O)(6)]Cl(2) that occur by the substitution of the water molecules in the coordination sphere of Ni(II) by the nitrogen atoms of ferrocyanide. We demonstrated that the nature of the deposited film depends mainly on the relative concentration of the anchoring sites versus the precursors' solution. Attenuated Total Reflection Fourier Transformed Infra Red (ATR-FTIR), X-ray reflectivity, X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) were used to characterize the steps of the growth process.

12.
Phys Chem Chem Phys ; 13(48): 21600-7, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22068682

RESUMO

One of the major limitations yet to the global implementation of polymer electrolyte membrane fuel cells (PEMFCs) is the cathode catalyst. The development of efficient platinum-free catalysts is the key issue to solve the problem of slow kinetics of the oxygen reduction reaction (ORR) and high cost. We report a promising catalyst for ORR prepared through the annealing treatment under inert conditions of the cobalt-benzotriazole (Co-BTA) complex supported on carbon nanotubes (CNTs). The N-rich benzotriazole precursor was chosen based on its ability to complex Co(II) ions and generate under annealing highly reactive radicals able to tune the physicochemical properties of CNTs. X-Ray photoelectron spectroscopy (XPS) was used to follow the surface structure changes and highlight the active electrocatalytic sites towards the ORR. To achieve further evaluation of the catalysts in acidic medium, voltamperometry, rotating disk electrode (RDE), rotating ring-disk electrode (RRDE) and half-cell measurements were performed. The resulting catalysts (Co/N/CNTs) all show catalytic activity towards the ORR, the most active one resulting from annealing at 700 °C. The overall electron transfer number for the catalyzed ORR was determined to be ∼3.7 with no change upon the catalyst loading, suggesting that the ORR was dominated by a 4e(-) transfer process. The results indicate a promising alternative cathode catalyst for ORR in fuel cells, although its performance is still lower (overpotential around 110 mV evaluated by RDE and RRDE) than the reference Pt/C catalyst.

13.
Chemphyschem ; 12(16): 2973-8, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21922628

RESUMO

The "3D amino-induced electroless plating" (3D-AIEP) process is an easy and cost-effective way to produce metallic patterns onto flexible polymer substrates with a micrometric resolution and based on the direct printing of the mask with a commercial printer. Its effectiveness is based on the covalent grafting onto substrates of a 3D polymer layer which presents the ability to entrap Pd species. Therefore, this activated Pd-loaded and 3D polymer layer acts both as a seed layer for electroless metal growth and as an interdigital layer for enhanced mechanical properties of the metallic patterns. Consequently, flexible and transparent poly(ethylene terephtalate) (PET) sheets were selectively metalized with nickel or copper patterns. The electrical properties of the obtained metallic patterns were also studied.

14.
ACS Appl Mater Interfaces ; 3(3): 740-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21370816

RESUMO

Ethanol-mediated metal transfer printing (mTP) is a soft method, which allows to efficiently deposit metals onto various organic surfaces for applications in organic electronics. This simple approach in based on the stronger adhesion of the metals to the organic materials in the presence of thin ethanol layer between the metallized PDMS and the substrate due to the capillary action. Patterns with a resolution of at least 20 µm have been obtained on organic polymeric materials and photoresists without heating or applied pressure. Compared to other methods ethanol mediated mTP is considerably faster and has smaller limitations on the stamp depth. Residual silicone layer detected on the metal surface after the transfer by XPS studies has been mostly removed by UV/ozone treatment. Organic field-effect transistors (OTFTs) based on the metal electrodes deposited by mTP have been successfully fabricated and tested.


Assuntos
Eletrodos , Etanol/química , Ouro/química , Membranas Artificiais , Compostos Orgânicos/química , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Propriedades de Superfície
16.
ACS Appl Mater Interfaces ; 2(11): 3043-51, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21053943

RESUMO

The ligand induced electroless plating (LIEP) process was recently developed and thoroughly demonstrated with one of the most used polymers for plating processes: acrylonitrile-butadiene-styrene (ABS). This generic process is based, thanks to the use of diazonium salts as precursors, on the covalent grafting of a thin layer of poly(acrylic acid) (PAA) acting as ligand for metallic salts onto pristine polymer surfaces. This strategy takes advantage of the PAA ion exchange properties. Indeed, carboxylate groups contained in PAA allow one to complex copper ions which are eventually reduced and used as catalysts of the metallic deposition. Essentially based on ABS, ABS-PC (ABS-polycarbonate) and PA (polyamide) substrates, the present paper focuses on the role of the polymer substrate and the relationships between the macroscopic properties and microscopic characterizations such as infrared (IR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The adhesion strength of the metallic layer deposited via that LIEP process with the bulk polymer substrates was successfully compared with the adhesion of similar copper films deposited by the usual process based on chromic acid etching and palladium-based seed layer, by measuring the T-peel adhesion strength, and by carrying out the common industrial scotch tape test. Lastly, the electrical properties of the deposited layer were studied thanks to a four-point probe and scanning tunneling microscopy (STM) measurements.

17.
Chem Commun (Camb) ; 46(24): 4327-9, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20461273

RESUMO

Isolated nanometric objects of the nickel-iron cyanide-bridged coordination network are obtained by a sequential growth on "molecular seeds" anchored on Si(100) surfaces. Control of the density and the size of the nano-objects is achieved by imposing a growth process without side nucleation.

18.
ACS Appl Mater Interfaces ; 2(4): 1177-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20361751

RESUMO

A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate.


Assuntos
Resinas Acrílicas/química , Eletroquímica/métodos , Polímeros/química , Cátions , Quelantes/química , Cromatos/química , Cobre/química , Metais/química , Microscopia Eletrônica de Varredura/métodos , Plásticos/química , Espectrofotometria Atômica/métodos , Espectrofotometria Infravermelho/métodos , Propriedades de Superfície
19.
Science ; 326(5958): 1384-7, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19965754

RESUMO

Interconversion of water and hydrogen in unitized regenerative fuel cells is a promising energy storage framework for smoothing out the temporal fluctuations of solar and wind power. However, replacement of presently available platinum catalysts by lower-cost and more abundant materials is a requisite for this technology to become economically viable. Here, we show that the covalent attachment of a nickel bisdiphosphine-based mimic of the active site of hydrogenase enzymes onto multiwalled carbon nanotubes results in a high-surface area cathode material with high catalytic activity under the strongly acidic conditions required in proton exchange membrane technology. Hydrogen evolves from aqueous sulfuric acid solution with very low overvoltages (20 millivolts), and the catalyst exhibits exceptional stability (more than 100,000 turnovers). The same catalyst is also very efficient for hydrogen oxidation in this environment, exhibiting current densities similar to those observed for hydrogenase-based materials.


Assuntos
Catálise , Técnicas Eletroquímicas , Hidrogênio/química , Hidrogenase , Nanotubos de Carbono/química , Níquel/química , Materiais Biomiméticos/química , Domínio Catalítico , Eletrodos , Concentração de Íons de Hidrogênio , Hidrogenase/química , Ligantes , Oxirredução , Fosfinas/química , Prótons , Ácidos Sulfúricos/química
20.
J Phys Chem B ; 113(17): 5829-36, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19341249

RESUMO

Electrotransport of sodium chloride near and through the ASV anion exchange membrane was first investigated. Chronopotentiometric and current-voltage characteristics results have shown that the ASV membrane acts as a totally conducting plane with respect to the transport of NaCl electrolyte. SEM and AFM images contributed to confirm the overall homogeneous surface of the membrane. Further chronopotentiometric studies of the membrane were evaluated in the presence of different alkaline chloride solutions in order to explore the influence of alkali co-ions on the transport phenomena. Membrane characterization led to determine the transport number of chloride counterion in the membrane. It is reported in this work that chronopotentiometry using the Sand equation toward the homogeneous ion exchange membrane is a simple and efficient method for determination of the diffusion coefficient of the electrolytes in the bulk solution. Discussions on the transport properties of the electrolyte solutions in relation with the hydrated ion sizes allowed us to verify the diffusion coefficient of the electrolytes determined by means of chronopotentiometric method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...